
Micromega Corporation 1 R20040707

Using the uM-FPU
with the PICAXE

Introduction

The uM-FPU is a 32-bit floating point coprocessor that can be easily interfaced with the PICAXE family of
microcontrollers to provide support for 32-bit IEEE 754 floating point operations and long integer
operations. The uM-FPU is easy to connect, using two output pins and one input pin. There are no external
components required.

uM-FPU Features

 8-pin integrated circuit.
 No additional external components
 SPI compatible interface
 Sixteen 32-bit general purpose registers for storing floating point or long integer values
 Five 32-bit temporary registers with support for nested calculations (i.e. parenthesis)
 Floating Point Operations

 Set, Add, Subtract, Multiply, Divide
 Sqrt, Log, Log10, Exp, Exp10, Power, Root
 Sin, Cos, Tan
 Asin, Acos, Atan, Atan2
 Floor, Ceil, Round, Min, Max, Fraction
 Negate, Abs, Inverse
 Convert Radians to Degrees
 Convert Degrees to Radians
 Compare, Status

 Long Integer Operations
 Set, Add, Subtract, Multiply, Divide, Unsigned Divide
 Negate, Abs
 Compare, Unsigned Compare, Status

 Conversion Functions
 Convert 8-bit and 16-bit integers to floating point
 Convert 8-bit and 16-bit integers to long integer
 Convert long integer to floating point
 Convert floating point to long integer
 Convert floating point to ASCII
 Convert floating point to formatted ASCII
 Convert long integer to ASCII
 Convert long integer to formatted ASCII
 Convert ASCII to floating point
 Convert ASCII to long integer

 Full set of PICAXE support routines provided for easy implementation.

Connecting

Micromega Corporation 2 Using the uM-FPU with the PICAXE

Connecting the uM-FPU to the PICAXE

The uM-FPU requires two output pins and one input pin for interfacing to the PICAXE. The
communication is implemented using a SPI interface. The default setting for these pins are:

FPU_CLOCK = output7
FPU_DATAOUT = output6
FPU_DATAIN = input6

The settings for these pins can be changed to suit your application. The support routines assume that the
uM-FPU chip is always selected, so the FPU_CLOCK, FPU_DATAOUT and FPU_DATAIN pins should
not be used for other connections as this will likely result in loss of synchronization between the PICAXE
and the uM-FPU coprocessor.

uM-FPU Pin Assignment

Floating Point Routines

Micromega Corporation 3 Using the uM-FPU with the PICAXE

Using the uM-FPU Floating Point Routines

A full set of support routines is provided to handle all of the communication between the PICAXE and the
uM-FPU. The template file uM-FPU.BAS contains all of the definitions and support code. This file can be
used directly as the starting point for a new program, or the definitions and support code can be copied
from this file to another program. Each uM-FPU support routine is described in detail in a reference guide
included as Appendix A of this document.

In order to ensure that the PICAXE and the uM-FPU coprocessor are synchronized, reset code must be
executed at the start of every program. The required reset code is included in the uM-FPU.BAS file. The
code is as follows:

low FPU_CLOCK 'reset the uM-FPU coprocessor
low FPU_DATAOUT
pulsout FPU_CLOCK, 30 'send 300 usec reset pulse
pause 2 'wait for reset

The uM-FPU contains sixteen 32-bit registers, numbered 0 through 15, which are used to store floating
point or long integer values. Register 0 is reserved for use as a working register and is modified by some of
the uM-FPU operations. Registers 1 through 15 are available for general use.

Arithmetic operations on the uM-FPU are defined in terms of A and B registers. For example:

FADD A = A + B
FDIV A = A / B
SQRT A = sqrt(A)
SIN A = sin(A)

Commands are sent to the uM-FPU by setting the opcode variable to the value of the command opcode
and calling the fpu_command sub procedure. (See Appendix B for a summary of opcodes. Symbols for
all opcodes have been defined in the uM-FPU.bas file) For example:

opcode = SQRT 'A = SQRT(A)
gosub fpu_command

Any of the sixteen registers can be selected as the A or B registers. The A register is set with the
SELECTA command and the B register is set with the SELECTB command. The reg variable is used to
specify the register for the command. For example:

reg = 1 'Select Register 1 as A register
opcode = SELECTA
gosub fpu_command

The B register is automatically selected by many of the uM-FPU commands, and the fpu_command sub
procedure using the reg variable to select the B register. A separate SELECTB command is not often
required.

For example, the following code adds register 2 to register 1.

reg = 1
opcode = SELECTA 'Select Register 1 as A register
gosub fpu_command

reg = 2 'reg specifies the B register
opcode = FADD 'A = A + B
gosub fpu_command '(Register 1 = Register 1 + Register 2)

Floating Point Routines

Micromega Corporation 4 Using the uM-FPU with the PICAXE

 Using symbol definitions to provide meaningful names for the uM-FPU registers creates a more readable
program. The following code is the same as above, but using symbol names.

symbol Total = 1 'total amount (uM-FPU register 1)
symbol Value = 2 'current value (uM-FPU register 2)

reg = Total 'Select Total as A register
opcode = SELECTA
gosub fpu_command

reg = Value 'Total = Total + Value
opcode = FADD
gosub fpu_command

The following floating point commands are provided:

SET A = B
FADD A = A + B
FSUB A = A – B
FMUL A = A * B
FDIV A = A / B

ABS A = |A|
ACOS A = acos (A)
ASIN A = asin(A)
ATAN A = atan(A)
ATAN2 A = atan2(A)
CEIL A = ceil(A)
COS A = cos(A)
EXP A = exp(A)
EXP10 A = exp10(A)
FCOMPARE Compare A and B
FIX A = fix(B)
FLOOR A = floor(A)
FSTATUS Get the floating point status of A
GET Get the value of A
INV A = 1 / A
LOG A = log(A)
LOG10 A = log10(A)
MAX A = maximum of A and B
MIN A = minimum of A and B
NEGATE A = -A
POWER A = A to the power of B
ROOT A = the Bth root of A
ROUND A = round(A)
SIN A = sin(A)
SQRT A = sqrt(A)
TAN A = tan(A)
DEGREES Convert radians to degrees
RADIANS Convert degrees to radians

The following example implements the equation Z = SQRT(X**2 + Y**2). The equation is broken into
several steps: the X value is squared (multiplied by itself), the Y value is squared, the Z value is set to the
sum of the squares, and the square root function is called to get the final result.

Floating Point Routines

Micromega Corporation 5 Using the uM-FPU with the PICAXE

symbol Xvalue = 1 'X value (uM-FPU register 1)
symbol Yvalue = 2 'Y value (uM-FPU register 2)
symbol Zvalue = 3 'Z value (uM-FPU register 3)

reg = Xvalue 'X = X ** 2
opcode = SELECTA
gosub fpu_command

opcode = FMUL
gosub fpu_command

reg = Yvalue 'Y = Y ** 2
opcode = SELECTA
gosub fpu_command

opcode = FMUL
gosub fpu_command

reg = Zvalue 'Z = X + Y
opcode = SELECTA
gosub fpu_command

reg = Xvalue
opcode = SET
gosub fpu_command

reg = Yvalue
opcode = FADD
gosub fpu_command

opcode = SQRT 'Z = sqrt(Z)
gosub fpu_command

The value of A register is not changed by the uM-FPU support routines. If multiple operations are
performed on the same register it isn’t necessary to select it each time, only when it needs to change. For
example:

reg = Result 'Result = sqrt(Value1 + Value2 + Value3)
opcode = SELECTA
gosub fpu_command
reg = Value1
opcode = SET
gosub fpu_command
reg = value2
opcode = FADD
gosub fpu_command
reg = value3
opcode = FADD
gosub fpu_command
opcode = SQRT
gosub fpu_command

Note: The opcode value must be set for each command because the value of opcode will be changed by
the fpu_command sub procedure. After each command, the value of reg is set to the value of the B
register. As a result, in many cases the next command can be executed without having to change the value
of reg.

Floating Point Routines

Micromega Corporation 6 Using the uM-FPU with the PICAXE

Loading Floating Point Values

The PICAXE compiler does not provide support for floating point number syntax, so floating point values
must be entered using alternate methods. There are several ways to load floating point values into the uM-
FPU. Commands are provided to:

LOADBYTE Load 8-bit signed integer and convert to floating point
LOADUBYTE Load 8-bit unsigned integer and convert to floating point
LOADWORD Load 16-bit signed integer and convert to floating point
LOADUWORD Load 16-bit unsigned integer and convert to floating point
LOADZERO Load the floating point value 0.0
LOADONE Load the floating point value 1.0
LOADE Load the floating point value of e (2.7182818)
LOADPI Load the floating point value of pi (3.1415927)

Load a signed byte value:
opcode = LOADBYTE 'load byte value and convert to float
gosub fpu_command
dataByte = n '(where n is a byte variable)
gosub fpu_sendByte '8-bit byte is sent using fpu_sendByte

Load an unsigned word value:
opcode = LOADUWORD 'load byte value and convert to float
gosub fpu_command
dataWord = 50000
gosub fpu_sendWord '16-bit word is sent using fpu_sendWord

Load Zero:
opcode = LOADZERO 'load register 0 with 0.0
gosub fpu_command

Load Pi:
opcode = LOADPI 'load register 0 with 3.1415927
gosub fpu_command

Floating point numbers are 32-bit values. (Appendix C describes the IEEE 754 32-bit floating point number
format.) The easiest way to load a 32-bit floating point value is to use two 16-bit hexadecimal values. A
handy utility program called uM-FPU Converter is available to convert between 32-bit floating point
values and hexadecimal values. The WRITEA or WRITEB commands are used to load 32-bit values.

Load a floating point value directly in code:
reg = Angle 'write 32-bit value to register
opcode = WRITEB ' and select register as B register
gosub fpu_command
dataWord = $41A0 '(floating point value 20.0)
gosub fpu_sendWord
dataword = $0000
gosub fpu_sendWord

Since each of these commands sets the B register, and fpu_command sets reg to the value of the B
register, arithmetic operations can immediately follow the load command. For example:

reg = Angle 'Angle = Angle / pi
opcode = SELECTA
gosub fpu_command

Floating Point Routines

Micromega Corporation 7 Using the uM-FPU with the PICAXE

opcode = LOADPI
gosub fpu_command
opcode = FDIV
gosub fpu_command

reg = Value 'Value = Value + 2
opcode = SELECTA
gosub fpu_command
opcode = LOADBYTE
gosub fpu_command
dataByte = 2
gosub fpu_sendByte
opcode = FADD
gosub fpu_command

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical
portions of code, floating point constants should be loaded beforehand to maximize the processing speed in
the critical section. With fifteen registers available for storage on the uM-FPU, it is often possible to
preload all of the required constant values. Since the load routines must send data to the uM-FPU for
conversion, there is additional overhead associated with each type of load. The majority of the overhead is
associated with the data transfer. For example, the LOADBYTE command transfers an additional 8-bit
value, LOADWORD transfers two 8-bit values, and WRITEB transfers four 8-bit values. Minimizing the
amount of data transfer will maximize the execution speed of your program.

Floating Point Routines

Micromega Corporation 8 Using the uM-FPU with the PICAXE

Comparing and Testing Floating Point Values

A floating point value can be positive zero, negative zero, positive non-zero, negative non-zero, positive
infinite, negative infinity or Not a Number (which occurs if an invalid operation is performed on a floating
point value). The following symbols define the floating point status bits:

IS_ZERO Plus zero
IS_NZERO Minus zero
IS_NEGATIVE Negative
IS_NAN Not-a-Number
IS_PINF Plus infinity
IS_NINF Minus infinity

The FSTATUS command is used to check the status of a floating point number. For example:
opcode = FSTATUS
gosub fpu_command
gosub fpu_getByte
if status = IS_ZERO or status = IS_NZERO then zeroValue
if status = IS_NEGATIVE then negativeValue

 sertxd("value is positive")
…
negativeValue:
 sertxd("value is negative")
…
zeroValue:
 sertxd("value is zero")

The FCOMPARE command is used to compare two floating point values. The status bits are set for the
results of the operation A – B. (The selected A and B registers are not modified). For example:

opcode = FCOMPARE
gosub fpu_command
gosub fpu_getByte
if status = IS_ZERO then sameAs
if status = IS_NEGATIVE then lessThan
 sertxd("A > B")
 …
lessThan:
 sertxd("A < B")
 …
sameAs:
 sertxd("A = B")
 …

Long Integer Routines

Micromega Corporation 9 Using the uM-FPU with the PICAXE

Using the uM-FPU Long Integer Routines

Any of the sixteen uM-FPU registers can be used to store long integer values. The support routines for
long integers work in exactly the same manner as the floating point routines and are defined in terms of the
A and B registers. For example:

symbol Total = 1 'total amount (uM-FPU register 1)
symbol Value = 2 'current count (uM-FPU register 2)

reg = Total 'Total = Total + Value
opcode = SELECTA
gosub fpu_command
reg = Value
opcode = LADD
gosub fpu_command

The following long integer routines are provided:

SET A = B
LADD A = A + B
LSUB A = A – B
LMUL A = A * B
LDIV A = A / B
LUDIV A = A / B (unsigned)

LABS A = |A|
LCOMPARE Compare A and B
LFLOAT A = float(A)
LSTATUS Get the long integer status of A
LNEGATE A = -A
LUCOMPARE Compare A and B (unsigned)

Loading Long Integer Values

There are several ways to load long integer values into the uM-FPU. Commands are provided to:
LONGBYTE Load 8-bit signed integer and convert to long integer
LONGUBYTE Load 8-bit unsigned integer and convert to long integer
LONGWORD Load 16-bit signed integer and convert to long integer
LONGUWORD Load 16-bit unsigned integer and convert to long integer
LOADZERO Load the long integer value 0

Load a byte value:
opcode = LONGBYTE 'load byte value and convert to long
gosub fpu_command
dataByte = n '(where n is a byte variable)
gosub fpu_sendByte '8-bit byte is sent using fpu_sendByte

Load Zero:
opcode = LOADZERO 'load register 0 with 0
gosub fpu_command

Load a long value directly in code:
reg = Value 'write 32-bit value to register
opcode = WRITEB ' and select register as B register
gosub fpu_command
dataWord = $0007 'high 16-bits of 500,000

Long Integer Routines

Micromega Corporation 10 Using the uM-FPU with the PICAXE

gosub fpu_sendWord
dataword = $A120 'low 16-bits of 500,000
gosub fpu_sendWord

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical
portions of code floating point constants should be loaded beforehand to maximize the processing speed in
the critical section. With fifteen registers available for storage on the uM-FPU, it is often possible to
preload all of the required constant values. Since the load routines must send data to the uM-FPU for
conversion, there is additional overhead associated with each type of load. The majority of the overhead is
associated with the data transfer. The LONGBYTE routine transfers an additional 8-bit value, the
LONGWORD routine transfers two 8-bit values, and the WRITEA and WRITEB routines transfer four 8-
bit values. Minimizing the amount of data transfer will maximize the execution speed of your program.

Comparing and Testing Long Integer Values

A long integer value can be zero, positive, or negative. The following symbols define the long status bits:

IS_ZERO Plus zero
IS_NEGATIVE Negative

The LSTATUS command is used to check the status of a long integer number. For example:

opcode = LSTATUS
gosub fpu_command
gosub fpu_getByte
if status = IS_ZERO then zeroValue
if status = IS_NEGATIVE then negativeValue

 sertxd("value is positive")
…
negativeValue:
 sertxd("value is negative")
…
zeroValue:
 sertxd("value is zero")

The LCOMPARE and LUCOMPARE commands are used to compare two long integer values. The status
bits being set for the results of the operation A – B. (The selected A and B registers are not modified).
LCOMPARE does a signed compare and the LUCOMPARE does an unsigned compare. For example:

opcode = LCOMPARE
gosub fpu_command
gosub fpu_getByte
if status = IS_ZERO then sameAs
if status = IS_NEGATIVE then lessThan
 sertxd("A > B")
 …
lessThan:
 sertxd("A < B")
 …
sameAs:
 sertxd("A = B")
 …

Left and Right Parentheses

Micromega Corporation 11 Using the uM-FPU with the PICAXE

Left and Right Parenthesis

Mathematical equations are often expressed with parenthesis to define the order of operations. For
example Y = (X-1) / (X+1). The expressions inside the parentheses often need to be assigned to a
temporary value before they can be used with other expressions in the equation. Temporary values are also
useful to preserve the original value of a variable used in an equation. The left and right parenthesis
operators provide a convenient means of allocating temporary values.

When a left parenthesis is issued, the current A register selection is saved and a new value is assigned that
references a temporary register. Operations can now be performed as normal with the temporary register
selected as the A register. When a right parenthesis is issued, the current value of the A register is copied
to register 0, register 0 is selected as the B register, and the previous A register selection is restored. The
register 0 value can be used immediately in subsequent operations. Up to five levels of parentheses can be
used. The SELECTA command should not generally be used inside parentheses since the A register is
selected automatically set by the left and right parentheses operators.

In the example shown earlier for the equation Z = sqrt(X**2 + Y**2), the values of X and Y were
modified during the calculation. Using parentheses, it’s easy to implement the equation while retaining the
original values of X and Y. For example:

symbol Xvalue = 1 'X value (uM-FPU register 1)
symbol Yvalue = 2 'Y value (uM-FPU register 2)
symbol Zvalue = 3 'Z value (uM-FPU register 3)

'Z = sqrt(X**2 + Y**2)
'---------------------
reg = Zvalue 'Zvalue = Xvalue ** 2
opcode = SELECTA
gosub fpu_command
reg = Xvalue
opcode = SET
gosub fpu_command
opcode = FMUL
gosub fpu_command

opcode = LEFT 'temp1 = Yvalue ** 2
gosub fpu_command
reg = Yvalue
opcode = SET
gosub fpu_command
opcode = FMUL
gosub fpu_command

opcode = RIGHT 'Zvalue = Zvalue + temp1
gosub fpu_command
opcode = FADD
gosub fpu_command

opcode = SQRT 'Zvalue = sqrt(Zvalue)
gosub fpu_command

Left and Right Parentheses

Micromega Corporation 12 Using the uM-FPU with the PICAXE

Another example:

'Y = 10 / (X + 1)
'----------------
reg = Yvalue 'Yvalue = 10
opcode = SELECTA
gosub fpu_command
opcode = LOADBYTE
gosub fpu_command
dataByte = 10
gosub fpu_sendByte
opcode = SET
gosub fpu_command

opcode = LEFT 'temp1 = Xvalue + 1
gosub fpu_command
reg = Xvalue
opcode = SET
gosub fpu_command
opcode = LOADONE
gosub fpu_command
opcode = FADD
gosub fpu_command

opcode = RIGHT 'Yvalue = Yvalue / temp1
gosub fpu_command
opcode = FDIV
gosub fpu_command

Print Routines

Micromega Corporation 13 Using the uM-FPU with the PICAXE

Print routines

There are several print routines provided to display register values on the PC screen using the sertxd
PICAXE command.

Print_Float displays floating point value on the PC screen
Print_FloatFormat dsiplays formatted floating point value on the PC screen
Print_Long displays signed long integer on the PC screen
Print_LongFormat displays formatted long integer on the PC screen

The following examples assume that Angle contains the floating point value 3.1415927 and Total contains
the long integer value –2000.

reg = Angle 'select Angle as A register
opcode = SELECTA
gosub fpu_command

gosub print_Float 'displays Angle in default float format
Value displayed: 3.1415927

format = 62 'display Angle in 6.2 float format
gosub print_FloatFormat

Value displayed: 3.1416

reg = Total 'select Total as A register
opcode = SELECTA
gosub fpu_command

gosub Print_Long 'displays Total in default long format
Value displayed: -2000

format = 10 'display Total in long format
gosub Print_LongFormat 'signed, width of 10

Value displayed: -2000

format = 110 'display Total in long format
gosub Print_LongFormat 'unsigned, width of 10

Value displayed: 4294965296

Sample Code

Micromega Corporation 14 Using the uM-FPU with the PICAXE

Sample Code

'The following example takes an integer value representing the diameter
'of a circle in millimeters, converts to centimeters and calculates the
'circumference and area. For example, the inputValue could be a value
'read from a distance finding sensor. A detailed description of each
'step of the calculations is provided.

'-------------------- constants ---------------------------------------

symbol Diameter = 4 'diameter (uM-FPU register 4)
symbol Circumference = 5 'circumference (uM-FPU register 5)
symbol Area = 6 'area (uM-FPU register 6)

'-------------------- variables ---------------------------------------

symbol inputValue = W0 'diameter in centimeters

'==
'==================== main routine ====================================
'==

main:
low FPU_CLOCK 'reset the uM-FPU coprocessor
low FPU_DATAOUT
pulsout FPU_CLOCK, 30 'send 300 usec reset pulse
pause 2 'wait for reset

'get input value
'---------------
inputValue = 250
sertxd(13, 10, "Diameter (mm): ", #inputValue)

'Diameter = inputValue / 10 (convert to centimeters)
'---
reg = Diameter 'select Diameter as A register
opcode = SELECTA
gosub fpu_command

opcode = LOADWORD 'load a word value into Reg0 and convert
gosub fpu_command ' to floating point.
dataByte = inputValue '(selects Reg0 as B register, reg = 0)
gosub fpu_sendWord

opcode = SET 'A = B
gosub fpu_command '(Diameter = Reg0)

opcode = LOADBYTE 'load 10 into Reg0 and convert to
gosub fpu_command ' floating point (10.0)
dataByte = 10 '(selects Reg0 as B register, reg = 0)
gosub fpu_sendByte

opcode = FDIV 'A = A / B
gosub fpu_command '(Diameter = Diameter / Reg0)

sertxd(13, 10, "Diameter (cm): ")
format = 92 'print as 9.2 floating point format
gosub print_floatFormat

Sample Code

Micromega Corporation 15 Using the uM-FPU with the PICAXE

'Circumference = Diameter * pi
'-----------------------------
reg = Circumference 'select Circumference as A register
opcode = SELECTA
gosub fpu_command

reg = Diameter 'select Diameter as B register
opcode = SET 'A = B
gosub fpu_command '(Circumference = Diameter)

opcode = LOADPI 'load the value of pi into Reg0
gosub fpu_command '(selects Reg0 as B register, reg = 0)

opcode = FMUL 'A = A * B
gosub fpu_command '(Circumference = Circumference * Reg0)

sertxd(13, 10, "Circumference (cm): ")
format = 92 print as 9.2 floating point format
gosub print_floatFormat

'Area = (Diameter / 2)^2 * pi
'----------------------------
reg = Area 'select Area as register A
opcode = SELECTA
gosub fpu_command

reg = Diameter 'select Diameter as B register
opcode = SET 'A = B
gosub fpu_command '(Area = Diameter)

opcode = LOADBYTE 'load 2 into Reg0 and convert to
gosub fpu_command ' floating point (2.0)
dataByte = 2 '(selects Reg0 as B register, reg = 0)
gosub fpu_sendByte

opcode = FDIV 'A = A / B
gosub fpu_command '(Area = Area / Reg0)

reg = Area 'select Area as B register
opcode = FMUL 'A = A * B
gosub fpu_command '(Area = Area * Area)

opcode = LOADPI 'load the value of pi into Reg0
gosub fpu_command '(selects Reg0 as B register, reg = 0)

opcode = FMUL 'A = A * B
gosub fpu_command '(Area = Area * Reg0)

sertxd(13, 10, "Area (sq.cm.): ")
format = 92 'print as 9.2 floating point format
gosub print_floatFormat

sertxd(13, 10, "Done.") 'end of program
end

Micromega Corporation 16 R20040707

Appendix A
Reference for uM-FPU PICAXE routines

The uM_FPU PICAXE interface is implemented using sub procedures. Since this is a limited resource on
the PICAXE it is recommended that the PICAXE 18-X, PICAXE 28-X or PICAXE-40X be used with the
option for 256 gosubs enabled. The uM-FPU interface can be run with the PICAXE clock frequency at
either 4Mhz or 8MHz

Initialization Routine
reset Reset the uM-FPU

Data Transfer Routines
fpu_command Send command to the uM-FPU
fpu_getByte Get byte from the uM-FPU
fpu_getWord Get word from the uM-FPU
fpu_getStr Get string from the uM-FPU
fpu_sendByte Send byte to the uM-FPU
fpu_sendWord Send word to the uM-FPU

Print Routines
print_float Print free format floating point value
print_floatFormat Print formatted floating point value
print_long Print free format long value
print_longFormat Print formatted long value

Variables used as parameters
opcode Word Used to select the opcode for uM-FPU command
dataWord Word Used for data input/output
highByte Byte High byte of dataWord
dataByte Byte Low byte of dataWord
format Byte Used to specify format for printing (same byte as dataByte)
reg Byte Used to select register for uM-FPU command
bitcnt Byte Used as counter by input/output routines

Status Bits
IS_ZERO Plus zero
IS_NZERO Minus zero
IS_NEGATIVE Negative
IS_NAN Not-a-Number
IS_PINF Plus infinity
IS_NINF Minus infinity

Appendix A – Reference for uM-FPU PICAXE Sub Procedures

Micromega Corporation 17 Using the uM-FPU with the PICAXE

Initialization Routine

reset Reset the uM-FPU

Parameters: none
Return: fStatus = 0 successful reset

fStatus = 1 reset failed

Description: This routine must be called at the start of every application. The uM-FPU is reset to its
startup condition and communication between the PICAXE and the uM-FPU is
established. All uM-FPU registers are initialized to NaN (Not a Number) at reset,
therefore any operation that uses a register before a value has been stored in the register
will produce a result of NaN.

Example:
low FPU_CLOCK 'reset the uM-FPU coprocessor
low FPU_DATAOUT
pulsout FPU_CLOCK, 30 'send 300 usec reset pulse
pause 2 'wait for reset

Appendix A – Reference for uM-FPU PICAXE Sub Procedures

Micromega Corporation 18 Using the uM-FPU with the PICAXE

Data Transfer Routines

fpu_command Send command to the uM-FPU

Parameters: opcode command opcode value
reg register value

Return: none

Description: This sub procedure sends a command to the uM-FPU. Before sending the command it
checks the opcode to see if a register value is required. If required, the register value
specified by the reg variable is added to opcode. If the B register is set to zero by the
command, then reg is set to zero. The sub procedure waits until the uM-FPU is ready
for the next command, then sends the command opcode. If the command requires
additional data or returns data to the PICAXE it must be followed by the appropriate
byte, word or string routine listed below.

Example:
symbol Angle = 2 'current Angle (uM-FPU register 2)

reg = Angle
opcode = SELECTA 'select Angle as the A register
gosub fpu_command

opcode = LOADPI 'load value of pi to Register 0
gosub fpu_command

opcode = FADD 'Angle = Angle + pi
gosub fpu_command

fpu_getByte Get byte from the uM-FPU

Parameters: none

Return: dataByte 8-bit value read from uM-FPU

Description: Reads an 8-bit value from the uM-FPU. This sub procedure is used after a fpu_command
for commands that result in data being sent to the PICAXE.

Special case: • if the value is NaN or its absolute value is greater than 1, then the result is NaN

Example:
opcode = FSTATUS 'get the floating point status
gosub fpu_command ' of the A register
gosub fpu_getByte '(status is same as dataByte)

fpu_getWord Get word from the uM-FPU

Parameters: none

Return: dataWord 16-bit value read from uM-FPU

Appendix A – Reference for uM-FPU PICAXE Sub Procedures

Micromega Corporation 19 Using the uM-FPU with the PICAXE

Description: Reads a 16-bit value from the uM-FPU. This sub procedure is used after a fpu_command
for commands that result in data being sent to the PICAXE.

Example:
symbol Result = 1 'long Result (uM-FPU register 1)

reg = Result 'get value of Result register
opcode = GET '(in this example we only use
gosub fpu_command ' the lower 16-bits)
gosub fpu_getWord 'read high 16-bits (and ignore)
gosub fpu_getWord 'read low 16-bits

fpu_getStr Get string from the uM-FPU and output using sertxd command

Parameters: none

Return: none

Description: A zero terminated string is read from the uM-FPU and output using the sertxd command.
This sub procedure is used by the print routines and is not normally called directly by the
user.

fpu_sendByte Send byte to the uM-FPU

Parameters: dataByte 8-bit value to send to uM-FPU

Return: none

Description: Sends an 8-bit value to the uM-FPU. This sub procedure is used after a fpu_command
for commands that require additional data.

Example:
symbol inputValue = B0 '8-bit variable

opcode = LOADBYTE 'load inputValue to Register 0
gosub fpu_command ' and convert to float
dataByte = inputValue
gosub fpu_sendByte

fpu_sendWord Send word to the uM-FPU

Parameters: dataWord 16-bit value to send to uM-FPU

Return: none

Description: Sends an 16-bit value to the uM-FPU. This sub procedure is used after a fpu_command
for commands that require additional data.

Example:
opcode = LOADWORD 'load 10000 to Register 0
gosub fpu_command ' and convert to float
dataWord = 10000
gosub fpu_sendWord

Appendix A – Reference for uM-FPU PICAXE Sub Procedures

Micromega Corporation 20 Using the uM-FPU with the PICAXE

Print Routines

print_Float Display floating point value on the PC screen

Parameters: none

Return: none

Description: The floating point representation of the A register value is output using the sertxd
PICAXE command. Up to eight significant digits will be displayed if required. Very
large or very small numbers are displayed in exponential notation. The length of the
displayed value is variable and can be from 3 to 12 characters in length. The special cases
of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of the
display format are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

Example:
gosub print_float 'print float value

print_FloatFormat Display formatted floating point value on the PC screen

Parameters: format format specification

Return: none

Description: The formatted floating point representation of the A register value is output using the
sertxd PICAXE command. The format is specified as a decimal value passed in the
format variable. The tens digit specifies the width of the display field and the ones digit
specifies the number of decimal points. If the floating point value is too large for the
format specified, then asterisks will be displayed. If the number of decimal points is zero,
no decimal point will be displayed. Examples of the display format are as follows:

Value in register A format Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

The maximum width of the field is 9 and the maximum number of decimal points is 6.
Example:

format = 62 'print float value with 6.2 format
gosub print_floatFormat

Appendix A – Reference for uM-FPU PICAXE Sub Procedures

Micromega Corporation 21 Using the uM-FPU with the PICAXE

print_Long Display signed long integer value on the PC screen

Parameters: none

Return: none

Description: The signed long integer representation of the A register value is output using the
sertxd PICAXE command. The length of the displayed value is variable and can range
from 1 to 11 characters in length. Examples of the display format are as follows:

1
500000
-3598390

Example:
gosub print_long 'print long value

print_LongFormat Display formatted long integer value on the PC screen

Parameters: format format specification

Return: none

Description: The formatted long integer representation of the A register value is output using the
sertxd PICAXE command. The format is specified as a decimal value passed in the
format variable. A value between 0 and 15 specifies the width of the display field for a
signed long integer. The number is displayed right justified. If 100 is added to the format
value the value is displayed as an unsigned long integer. If the value is larger than the
specified width, asterisks will be displayed. If the width is specified as zero, the length
will be variable. Examples of the display format are as follows:

Value in register A format Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

The maximum width of the field is 15.
Example:

format = 10 'print long value with width of 10
gosub print_longFormat

Micromega Corporation 22 R20040707

Appendix B
uM-FPU Opcode Summary

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

SELECTA 0x Select A register
SELECTB 1x x Select B register
WRITEA Either 2x yyyy zzzz Write register and select A
WRITEB Either 3x yyyy zzzz x Write register and select B
READ Either 4x yyyy zzzz Read register
SET Either 5x A = B
FADD Float 6x x A = A + B
FSUB Float 7x x A = A - B
FMUL Float 8x x A = A * B
FDIV Float 9x x A = A / B
LADD Long Ax x A = A + B
LSUB Long Bx x A = A -B
LMUL Long Cx x A = A * B
LDIV Long Dx x A = A / B
SQRT Float E0 A = sqrt(A)
LOG Float E1 A = ln(A)
LOG10 Float E2 A = log(A)
EXP Float E3 A = e ** A
EXP10 Float E4 A = 10 ** A
SIN Float E5 A = sin(A) radians
COS Float E6 A = cos(A) radians
TAN Float E7 A = tan(A) radians
FLOOR Float E8 A = nearest integer <= A
CEIL Float E9 A = nearest integer >= A
ROUND Float EA A = nearest integer to A
NEGATE Float EB A = -A
ABS Float EC A = |A|
INVERSE Float ED A = 1 / A

DEGREES Float EE Convert radians to degrees
A = A / (PI / 180)

RADIANS Float EF Convert degrees to radians
A = A * (PI / 180)

SYNC F0 5C Synchronization

FLOAT Long F1 0 Copy A to Register 0
Convert long to float

FIX Float F2 0 Copy A to Register 0
Convert float to long

FCOMPARE Float F3 ss Compare A and B
(floating point)

Appendix B – uM-FPU Opcode Summary

Micromega Corporation 23 Using the uM-FPU with the PICAXE

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

LOADBYTE Float F4 bb 0 Write signed byte to Register 0
Convert to float

LOADUBYTE Float F5 bb 0 Write unsigned byte to Register 0
Convert to float

LOADWORD Float F6 wwww 0 Write signed word to Register 0
Convert to float

LOADUWORD Float F7 wwww 0 Write unsigned word to Register 0
Convert to float

READSTR F8 aa … 00 Read zero terminated string from
string buffer

ATOF Float F9 aa … 00 0 Convert ASCII to float
Store in A

FTOA Float FA ff Convert float to ASCII
Store in string buffer

ATOL Long FB aa … 00 0 Convert ASCII to long
Store in A

LTOA Long FC ff Convert long to ASCII
Store in string buffer

FSTATUS Float FD ss Get floating point status of A
FUNCTION FE0n User functions 0-15
FUNCTION FE1n User functions 16-31
FUNCTION FE2n User functions 32-47
FUNCTION FE3n User functions 48-63
LWRITEA Long FEAx yyyy zzzz Write register and select A
LWRITEB Long FEBx yyyy zzzz 0 Write register and select B
LREAD Long FECx yyyy zzzz Read register
LUDIV Long FEDx 0 A = A / B (unsigned long)
POWER Float FEE0 A = A ** B
ROOT Float FEE1 A = the Bth root of A
MIN Float FEE2 A = minimum of A and B
MAX Float FEE3 A = maximum of A and B

FRACTION Float FEE4 0 Load Register 0 with the
fractional part of A

ASIN Float FEE5 A = asin(A) radians
ACOS Float FEE6 A = acos(A) radians
ATAN Float FEE7 A = atan(A) radians
ATAN2 Float FEE8 A = atan(A/B)

LCOMPARE Long FEE9 ss Compare A and B
(signed long integer)

LUCOMPARE Long FEEA ss Compare A and B
(unsigned long integer)

LSTATUS Long FEEB ss Get long status of A
LNEGATE Long FEEC A = -A
LABS Long FEED A = |A|
LEFT FEEE Right parenthesis
RIGHT FEEF 0 Left parenthesis

Appendix B – uM-FPU Opcode Summary

Micromega Corporation 24 Using the uM-FPU with the PICAXE

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

LOADZERO Either FEF0 0 Load Register 0 with zero
LOADONE Float FEF1 0 Load Register 0 with 1.0
LOADE Float FEF2 0 Load Register 0 with e
LOADPI Float FEF3 0 Load Register 0with pi

LONGBYTE Long FEF4 bb 0 Write signed byte to Register 0
Convert to long

LONGUBYTE Long FEF5 bb 0 Write unsigned byte to Register 0
Convert to long

LONGWORD Long FEF6 wwww 0 Write signed word to Register 0
Convert to long

LONGUWORD Long FEF7 wwww 0 Write unsigned word to Register 0
Convert to long

IEEEMODE FEF8 Set IEEE mode (default)
PICMODE FEF9 Set PIC mode
BREAK FEFB Debug breakpoint
TRACEOFF FEFC Turn debug trace off
TRACEON FEFD Turn debug trace on
TRACESTR FEFE Send debug string to trace buffer
CHECKSUM FEFF 0 Calculate code checksum

VERSION FF Copy version string to string
buffer

Notes:
Data Type data type required by opcode
Opcode hexadecimal opcode value
Aruments additional data required by opcode
Returns data returned by opcode
B Reg value of B register after opcode executes
x register number (0-15)
n function number (0-63)
yyyy most significant 16 bits of 32-bit value
zzzz least significant 16 bits of 32-bit value
ss status byte
bb 8-bit value
wwww 16-bit value
aa … 00 zero terminated ASCII string

Micromega Corporation 25 R20040707

Appendix C
Floating Point Numbers

Floating point numbers can store both very large and very small values by “floating” the window of
precision to fit the scale of the number. Fixed point numbers can’t handle very large or very small numbers
and are prone to loss of precision when numbers are divided. The representation of floating point numbers
used by the uM-FPU is defined by the IEEE 754 standard.
The range of numbers that can be handled by the uM-FPU is approximately ± 1038.53.
.
IEEE 754 32-bit Floating Point Representation

IEEE floating point numbers have three components: the sign, the exponent, and the mantissa. The sign
indicates whether the number is positive or negative. The exponent has an implied base of two. The
mantissa is composed of the fraction.

The 32-bit IEEE 754 representation is as follows:

Exponent MantissaS

31 30 23 22 0

Sign Bit (S)
The sign bit is 0 for a positive number and 1 for a negative number.

Exponent
The exponent field is an 8-bit field that stores the value of the exponent with a bias of 127 that
allows it to represent both positive and negative exponents. For example, if the exponent field is
128, it represents an exponent of one (128 – 127 = 1). An exponent field of all zeroes is used for
denormalized numbers and an exponent field of all ones is used for the special numbers +infinity,
-infinity and Not-a-Number (described below).

Mantissa
The mantissa is a 23-bit field that stores the precision bits of the number. For normalized numbers
there is an implied leading bit equal to one.

Special Values

Zero
A zero value is represented by an exponent of zero and a mantissa of zero. Note that +0 and
–0 are distinct values although they compare as equal.

Denormalized
If an exponent is all zeros, but the mantissa is non-zero the value is a denormalized number.
Denormalized numbers are used to represent very small numbers and provide for an extended
range and a graceful transition towards zero on underflows. Note: The uM-FPU does not
support operations using denormalized numbers.

Infinity
The values +infinity and –infinity are denoted with an exponent of all ones and a fraction of
all zeroes. The sign bit distinguishes between +infinity and –infinity. This allows operations
to continue past an overflow. A nonzero number divided by zero will result in an infinity
value.

Appendix C – Floating Point Numbers

Micromega Corporation 26 Using the uM-FPU with the PICAXE

Not A Number (NaN)
The value NaN is used to represent a value that does not represent a real number. An
operation such as zero divided by zero will result in a value of NaN. The NaN value will flow
through any mathematical operation. Note: The uM-FPU initializes all of its registers to NaN
at reset, therefore any operation that uses a register that has not been previously set with a
value will produce a result of NaN.

Some examples of IEEE 754 32-bit floating point values displayed as four byte values are as follows:

$00, $00, $00, $00 '0.0
$3D, $CC, $CC, $CD '0.1
$3F, $00, $00, $00 '0.5
$3F, $40, $00, $00 '0.75
$3F, $7F, $F9, $72 '0.9999
$3F, $80, $00, $00 '1.0
$40, $00, $00, $00 '2.0
$40, $2D, $F8, $54 '2.7182818 (e)
$40, $49, $0F, $DB '3.1415927 (pi)
$41, $20, $00, $00 '10.0
$42, $C8, $00, $00 '100.0
$44, $7A, $00, $00 '1000.0
$44, $9A, $52, $2B '1234.5678
$49, $74, $24, $00 '1000000.0
$80, $00, $00, $00 '-0.0
$BF, $80, $00, $00 '-1.0
$C1, $20, $00, $00 '-10.0
$C2, $C8, $00, $00 '-100.0
$7F, $C0, $00, $00 'NaN (Not-a-Number)
$7F, $80, $00, $00 '+inf
$FF, $80, $00, $00 '-inf

